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SUMMARY

This work concerns the theory and practice of implementing Tarmmura's algorithm for

3D Delaunay triangulation on Intel's Gamma prototype, a 128 processor MIMD computer.

Efficient implementation of Tanemura's algorithm on a conventional, vector processing, su-

percomputer is problematic. It does not vectorize to any significant degree and requires

indirect addressing. Efficient implementation on a parallel architecture is possible, how-

ever. In this work, speeds in excess of 20 times a single processor Cray Y-MP are realized

on 128 processors of the Intel Garnma prototype.

1. INTRODUCTION

Delaunay triangulation is used for a number of 2D and 3D applications in CFD in-

cluding grid generation and surface reconstruction (refs. 1 and 2). Triangulation speed has

been an issue however, especially for very large meshes. The algorithm discussed here is

a 3D version of Tanemura's algorithm, an advancing front method for Delaunay triangu-

lation (refs. 3 and 4). This algorithm can be efficiently implemented on a scalar processor

such as a Silicon Graphics IRIS 310/VGX. Efficient implementation on a vector processor

such as the Cray Y-MP is difficult, however.

The most time consuming part of the algorithm is a series of range queries (i.e.,

given (x, y, z) find the nearest of N vertices). An exhaustive search vectorizes easily, first

computing the distance to each vertex, then finding the minimum of these through an

optimized system routine requiring O(ln N)vector startups and O(N)arithmetic. Using a

tree search based on quadtrees or (as here) coordinate bisection (ref. 5), reduces the arith-

metic complexity to O(ln N) in the number of vertices, but eliminates vectorization except
for a small exhaustive search at the bottom of the tree. This improvement is critical be-

cause Tanemura's algorithm requires several range queries per tetrahedron. Usually there

are about 7N tetrahedra, though in pathological cases (which never happen accidentally)

there can be O(N2)of them. Thus, for the average case, the complexity is O(N2)with

vectorization or O(N In N)without it.

The usual vectorization strategy, in cases like this, is to do a number of tree searches at

once, in effect vectorizing over the outer loop. In principal, this can be done for Tanemura's

algorithm. The strategy involves dividing all the queries according to which branch of the

tree search they take. This can be vectorized. Each of the two groups can be further

subdivided. This continues until the groups become too small for effective vectorization.

The degree of vectorization possible depends on the number of simultaneous range queries

and their spatial distribution. There is a degradation, perhaps as much as a factor of

two, from the completion of unnecessary range queries. These redundancies do not occur

for the sequential algorithm. Because of the significant programming effort required, this

strategy was not implemented. Instead, a partitioning strategy was used to effectively take

advantage of the MIMD parallelism available through Intel's Gamma prototype.
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Under the MIMD paradigm, eachprocessorhas a separate copy of the program, and

a spatially contiguous portion of the data. Under this domain decomposition approach,

each processor is responsible for many range queries. These need not be (and generally

aren't) synchronized. The fact that range queries in different processors require different

amounts of time is not a problem, since they don't interact. Processors finishing early

simply proceed to the next query. Similarly, the differences in the number of queries

required to form a given tetrahedron also don't affect efficiency. The remaining problem

is controlling the interactions between tetrahedra, especially those on different processors.

This is done by appropriate partitioning of the domain.

2. OVERVIEW OF TANEMURAS ALGORITHM

In the interests of clarity, a brief review of three dimensional triangulation, Delaunay

triangulation and Tanemura's algorithm is in order. The problem begins with a set of

nodes in three dimensions. These are given by their (x, y, z) coordinates. Any proper

triangulation tessellates space with tetrahedra in such a way that

1. The vertices of the tetrahedra are the nodes of the mesh,

2. All nodes of the mesh are vertices of one or more tetrahedra,

3. All the nodes are contained within a single polyhedron with triangular facets, and

4. All space within this polyhedron is filled with tetrahedra.

There is a considerable literature on Delaunay triangulation, its definition, its con-

struction, and its properties (see ref. 6 for a survey). In this case the insphere property is

relevant. It follows from 1-4 above that no tetrahedron contains a node. Delaunay trian-

gulation has a stronger property. The circumsphere of any tetrahedron contains no nodes.

An algorithm first shown by Tanemura (ref. 3) makes use of this property to generate the

Delaunay triangulation of a set of points.

Each tetrahedron is composed of four triangular faces. It is convenient to represent

the connectivity of the finished triangulation as a list of these faces. Each item of a face

list is composed of the indices of the three nodes that are its vertices, and the index of the

tetrahedra on either side. A list of the faces for each tetrahedra can be constructed from

a face list in one pass.

2.1 Making the First Tetrahedron

The algorithm begins by finding a node near the center of the cloud of points. The

line connecting this node with its closest neighbor is certain to be an edge of the Delaunay

triangulation (ref. 8).

This edge is promoted to a triangle by connecting both endpoints to another node,

the node which results in the minimum radius circumcircle for the triangle. In practice,
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FIGURE 1. In 2D, Tanemura's algorithm promotes edge AB to triangle ABC. Node E is

considered first, being the closest to the midpoint of AB. The center of ABE's circumcircle

is at point O. Node D is the closest to O. The circumcenter of ABD is at P. Node C is the
closest to P. The circumcircle for ABC contains no other nodes, so triangle ABC is formed•

The situation in 3D is similar, with minimum circumspheres substituting for circumcircles.

this is done iteratively, starting with the node closest to the midpoint of the edge. If the

circumsphere of this proposed triangle (the sphere with center and radius identical to the

triangles circumcircle) contains another node, the Delaunay edge is connected to that node

instead. This process is repeated until a triangle is found which contains no nodes within

its circumsphere. Such a triangle is guaranteed to be a face of the Delaunay triangulation.

Figure 1 depicts this process in two dimensions.

Finally the triangle is promoted to a tetrahedron by connecting all three vertices

to another node. As before, this is done iteratively, starting with the node closest to

the triangle's centroid. If the circumsphere of the proposed tetrahedron contains another

node, the Delaunay face is connected to that node instead. This process is continued until
a tetrahedron is found which contains no nodes within its circumsphere. From the insphere

property we know that such a tetrahedron is part of a Delaunay triangulation.

2.2 Advancing the Front

The initial tetrahedron consists of four faces which make up the initial face list.

These faces are only partially specified; they are each missing the index of a neighboring

tetrahedron. Such faces are called front faces; collectively they represent a two manifold

"front" in three space• Tanemura's algorithm is a frontal method which works by building
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the missingneighbors. Promoting a front face to a tetrahedron follows the procedure used

in building the initial tetrahedron, but with one additional constraint; the node finally

selected must lie on the open side of the face, that is, the side opposite the existing
tetrahedron.

No such node may exist. In that case the front face is identified as part of the

enclosing polyhedron (the convex hull for Delaunay triangulations). The missing neighbor

is symbolically identified (perhaps with a negative tetrahedron number) and the face is
removed from the front.

The connection of three face vertices to a node creates a new tetrahedron. This com-

pletes the information associated with that face and removes it from the front. However,

three triangles are defined in the process. If any of these triangles are already front faces,

the new tetrahedron is the missing neighbor and another triangle is removed from the

front. If not, they become part of the front. The front may expand or contract in this way.

The algorithm continues to build tetrahedra in this fashion until the front vanishes.

3. PARALLEL CONSIDERATIONS

In the MIMD paradigm, it is only necessary to eliminate the fine scale data dependen-

cies between processors. Synchronization takes place much less often, so statistical load

balancing strategies can be effective. In this case the principal data dependencies come

from neighboring front faces. If the two faces form a local concavity (i.e., if their common

edge is a reflex edge of the front) then they are likely to be part of the same tetrahedron.

It would be redundant to build tetrahedra on both simultaneously. Furthermore, it would

be a possible source of synchronization problems and related errors.

To prevent this occurrence and allow massive parallelism, the nodes have been divided

into physically disjoint sets each of which has its own front (domain decomposition). The

front can be characterized as a number of triangular faceted polyhedra. If each such poly-

hedron is completely contained within a single processor, there can be no data dependency
of this type.

When faces from two different processors meet at an edge, steps must be taken to

avoid building on both faces at once. The approach taken here is to ensure that only one

face from each such pair can be built on. In this implementation the arbitrary choice is

based on a global numbering scheme described in section 3.2 below.

3.1 Partitioning

The input for Delaunay triangulation is a collection of nodes in 3-space, specified by

their coordinates, (x, y, z). These are arbitrarily distributed among the various processors

in such a way that each processor has an equal (or nearly equal) number of nodes. The



nodesare then redistributed using a coordinate bisection strategy, implemented in parallel
as describedbelow.

The mean x coordinate of all the the nodes is determined, and the nodes within each

processor are divided into two approximately equal groups, according to whether the x
coordinate is smaller than the mean or not. Nodes are exchanged between processor pairs

whose binary address differs in the most significant digit. The low numbered processors

get the nodes with z coordinates less than the mean.

If there are more than two processors, this partitioning is repeated, with the y coor-

dinate, for each half of the cube. A separate mean y is used for those processors with low

numbers and those with high numbers. This divides the nodes more or less equally among

the four groups of processors.

Continuing along these lines, partitioning is next done in z, then x again and so

on until each partition is composed of a single processor. This partitioning of the nodes

results in a nearly equal number of nodes in each processor. It also results in a well defined

partition of the domain. A given (x, Y, z) location is associated with a unique processor.

3.2 Numbering System

Both a local and a global numbering scheme are used to identify vertices, faces, and

tetrahedra. For ease and efficiency of programming, a local numbering scheme is desired,

with each processor having nodes numbers starting from 1. On the other hand, a global

numbering is required, if for no other reason than to uniquely identify each node in the

resulting triangulation. For this reason, each node has a global number NG, a local number

NL and processor number Np. A node can be uniquely identified either by its global

number, or by the combination of its processor number and its local number.

When a triangle's vertices are all on the same processor (in the same partition), the

triangle is kept on that processor and the local numbers are used. When a triangle's vertices

are not all on the same processor, a local numbering scheme is only valid for nodes that

reside on the processor where the triangle is kept. Other vertices must somehow incorporate

both their processor number and the local node number on that processor. This is done by

simply taking a linear combination of the two numbers to form a composite node number

Nc defined as follows:

Nc = IO00000Np + NL (1)

For this purpose, processor numbers start at 1. Composite numbers are easily decoded to

find Np and NL.

Residence of triangles (and tetrahedra) that straddle processor boundaries is arbi-

trated using global node numbers. It is the processor where the vertex with the lowest

global node number resides.



One more special numbering convention is used. Sometimes,when promoting a tri-
angle to a tetrahedron, the node selectedwill resideon another processor. If the resulting
tetrahedron would reside on the other processor,it is not formed. Instead, the neighbor
number

JVN = -- lO00000Np (2)

is used as the tetrahedron number. Later, the tetrahedron will be formed from a face on

the other processor (the residence of a tetrahedron is the residence of at least three of its

four faces), and the true tetrahedron number will be filled in.

4. COMMUNICATION

Within a particular processor, the partitioning continues until only a few nodes (typ-

ically 18) occupy each partition. This tree structure allows efficient range queries within a

single processor. Typically, these queries ask for the node closest to a particular (x, y, z)

location. In most cases a definitive response can be formulated using only the information

from a single processor. In some cases though, neighboring processors will have to be

consulted. It is here that the difference between a shared memory architecture (like the

Cray-2) and a message passing architecture becomes most apparent.

In a shared memory architecture, data contained on other processors is directly ad-

dressable. For this particular query, there is no data corruption problem because the

coordinates of the vertices never change.

In a message passing architecture, one processor cannot directly fetch data from the

memory of another. Furthermore, in a tree structured search like this, it may not be

obvious which data needs to be fetched. The approach used here involves a query and

response. The relevant (x, y, z) coordinates are passed, and information about the closest
node to it is returned.

Although the Intel allows interrupt driven code, this was not used. Instead, queries

from foreign processors were honored at the end of each iteration, a procedure somewhat

akin to reading your mail at the end of the day. As written, an off processor query

halts execution until the response is received. If naively implemented, this could result

in deadlock, where two processors wait on each other, neither able to finish the iteration.

The solution chosen here is to process foreign queries while waiting for a response.

Several specific types of messages were used. Five are listed here.

first is an informational message in which no direct response is expected.

query/response pairs.

Note that the

The others are

iamdone- A message indicating that a particular processor is out of work, except for

fielding queries from other processors. When all processors are out of work, its time to

proceed to the output phase. This has the same effect as a global synchronization except

that queries from other processors can be processed while waiting.
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nodesend- A messagerequesting a range query from among the vertices contained on

a particular processor. The message contains the locations of the three front vertices

in question, the best current guess for the fourth vertex, and some information about

constraints, if any. This is enough to decide if any of the nodes on a particular processor

are an improvement over the current best guess and, if so, which one.

noderecv- A message stating which node is the best. This is the reply to nodesend. Also

given are the coordinates of the best node and the size of the circumsphere containing it

and the front triangle.

facesend- It is possible for a face to be created by a process that doesn't own it. In this

case, the face is sent to the other processor to be added to the face list on that processor.

facerecv- This is returned for synchronization only. First in, first out is implicitly assumed

in several places and a handshake is one way to be sure this is true.

4.1 Avoiding Communication

The majority of communication takes the form of range queries to other proces-

sors. Each processor contains points from a particular region in space and the bounding

boxes for these regions do not overlap. This information can sometimes be used to avoid

communication.

For example, the local processor is first searched to find the node which is closest to

the desired point. Usually such a node exists and is a certain distance from the desired

point. Using bounding box information, it can sometimes be established that any nodes

contained in another processor are farther away. The need to search a foreign processor can

thus be avoided by establishing that the search will be unsuccessful. Significant efficiency

gains result.

5. IMPORTANT DETAILS

In spite of the apparent simplicity of the implementation described above, complete-

ness requires correct treatment of two possible problems. These occur rarely; some point

sets don't need them at all. They are implemented as a sort of postprocessing step after

all the other triangulation is finished.

The first of these problems comes about when a processor finishes early. Through the

routine handling of queries and responses, a new face may be added to its face list. This

means the processor is no longer done. Other processors, needed to process any queries,

think it is done, and may quit at any time, so resuming triangulation is unsafe. The

procedure here is to wait for synchronization and then process the few "left over" faces of

this kind.

Another problem is the persistence of small regions that are not tetrahedralized. Even

though ownership of a tetrahedron guarantees ownership of three out of its four faces, it
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FIGURE 2. The global node numbers are such that the region shown is never triangu-

lated. All five triangles reside in processor 2, but they are surrounded by edges residing in

processor 1. An analogous situation occurs in 3D.

is possible for a group of tetrahedra owned by one processor to be completely surrounded

by triangles belonging to other processors. A 2D example of this situation is shown in

figure 2.

This situation can be detected by the existence of neighbor numbers NN in places

where tetrahedron numbers would be expected. It is handled by sending a description of

the missing tetrahedra to the processors where they reside.

6. RESULTS AND CONCLUSIONS

The serial code is operational and has been used on cases of up to 500,000 nodes.

The platform of choice for the serial code is the IRIS 310/VGX, using large amounts of

virtual memory. Speeds of 40 - 120 nodes per second were measured, the bigger problems

slowing down because of page faults and a log term in the complexity. Porting the code to

Cray Y-MP (1 processor) reveals two things. The speed is only about 2-3 times the speed

of the workstation, and the memory available to the user is considerably less. The Cray is

a shared machine which significantly degrades turnaround time and memory availability.

Use of performance monitoring utilities on the Cray confirm that very little of the code

is vectorlzed, in spite of considerable efforts to do so. Indirect addressing, conditional

execution, and considerable integer arithmetic further degrade performance. The measured

floating point performance was about 7 Mflops, a figure that indicates how little of the
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FIGURE 3. Performance of Tanemura's algorithm. The 128 processor performance of

Intel's Gamma prototype is 20 times as fast as the Y-MP for this problem. The degradation

for smaller problems is due to relatively higher communication costs.

code involves floating point calculations, and how little of that is vectorized. Higher Mflop

numbers were obtained, but only by doing redundant work - execution times were not

improved.

The parallel code has been implemented on the Intel Gamma Prototype. The results

are summarized in figure 2 for the case where the triangulation sites are randomly dis-

tributed inside a unit cube. The single processor speed of the i860 is about that of the

IRIS for this problem, though memory limitations keep the maximum size case down to

about 13000 nodes. Virtual memory is not available at this time.

Memory is sufficient to accommodate a 1,750,000 node triangulation in 128 processors,

though the largest case actually run was 1 million nodes, executing in about 7 minutes,

more than 20 times Cray speed. It was also twice the size of the largest Cray job, mostly

due to the difference in integer precision (32 bits on the i860 versus 64 bits on the Y-MP).

Doubling the number of processors does not double the speed, due to various overheads

including communication and I/O. The overhead is not constant but appears to increase

slightly with the number of nodes. This essentially sequential behavior is explained by

the disk bandwidth. Though large, the bandwidth does not depend on the number of

processors, so reading in the problem takes a certain irreducible amount of time. On the

largest cases the I/O time accounts for 2% of the run time. The effect is proportionately

higher for some small cases as the disk latency becomes significant. If some care is not
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paid to the I/O strategy, it can become the dominant cost. Direct access, unformatted

reads (one per processor) were used here to realize as much as possible of the available

disk bandwidth. By contrast, sequential access, formatted reads takes about 30 times as

long, since all I/O goes through a single processor and must be converted from ASCII to

binary. Direct access, formatted reads take about 300 times as long. Short records and no

look-ahead mean that the disk latency determines the read time.

A second possible source of overhead is the formation of the convex hull. To establish

that a face is part of the convex hull requires that a particular half space be clear of all

nodes. As originally implemented, this required checking every node (on every processor).

A more enlightened implementation simply checks the corners of the bounding box for

each processor. This has dramatically reduced the amount of communication, as well as

the overall algorithmic complexity.

Communication between processors is important but depends mainly on the number

of nodes per processor, a bounded quantity. This term accounts for the improvement

in speed relative to the Cray, as problem size increases. For example, in figure 3, the

32 processor results show only a 45% improvement in run time over those for the Cray

when 5000 nodes are triangulated, but this grows to more than a factor of 6 with 200K

nodes. A similar effect is seen on the 128 processor results.

A minor effect which is not accounted for in figure 3 is the time required to load

the program. This varied between 15 and 30 seconds, depending on the presence of other
users.

There is considerable room for optimism here. It seems likely that the i860 will

improve in speed as the compiler technology catches up with that used elsewhere. It

should be 20% faster than an IRIS workstation just based on the clock rate. Recent

experience with Vectoral compilers for the i860 chip (ref. 7) indicate that improvements of

a factor of 3 are possible in this area, mostly through instruction scheduling improvements.

The communication strategy used here is early in its development cycle and significant

improvements are expected in the future. In particular, strategies which combine messages

into fewer, larger ones, promise to reduce communication time through better amortization

of the latency.

On balance, this implementation of Tanemura's algorithm has produced a practical

and efficient way of triangulating very large numbers of points. It is of special interest

because it utilizes a true MIMD paradigm. As such, it is fundamentally different than

many other parallel implementations, which can be (and often are) efficiently implemented
on SIMD machines.
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